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Abstract—Spectrograms of speech and music contain distinct
striation patterns. Traditional features represent various prop-
erties of the audio signal but do not necessarily capture such
patterns. This work proposes to model such spectrogram patterns
using a novel Spectral Peak Tracking (SPT) approach. Two novel
time-frequency features for speech vs. music classification are
proposed. The proposed features are extracted in two stages.
First, SPT is performed to track a preset number of highest
amplitude spectral peaks in an audio interval. In the second
stage, the location and amplitudes of these peak traces are used
to compute the proposed feature sets. The first feature involves
the computation of mean and standard deviation of peak traces.
The second feature is obtained as averaged component posterior
probability vectors of Gaussian mixture models learned on the
peak traces. Speech vs. music classification is performed by
training various binary classifiers on these proposed features.
Three standard datasets are used to evaluate the efficiency
of the proposed features for speech/music classification. The
proposed features are benchmarked against five baseline ap-
proaches. Finally, the best-proposed feature is combined with
two contemporary deep-learning based features to show that
such combinations can lead to more robust speech vs. music
classification systems.

Index Terms—Spectral peak tracking, time-frequency audio
features, speech music classification, spectrogram, SVM, CNN,
GMM,

I. INTRODUCTION

CONTENT-based audio indexing and retrieval applica-
tions often involve a critical preprocessing step of seg-

menting and classifying audio signals into distinct categories.
Apart from general environmental sounds, speech and music
are two basic audio categories. Preprocessing steps require
classification algorithms that ensure the homogeneity of in-
dividual classes in audio segments [1]. This work focuses
on proposing features for better discrimination of speech and
music for such audio segmentation applications.

Researchers have exploited various acoustic differences
between speech and music signals for classifying them [2],
[3]. Saunders et al. [4] mention that pitch information usually
exists for only three octaves in speech, whereas fundamental
tones in music span up to six octaves. Sell et al. [5] state that
unlike speech, music is expected to have strict structures in
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Fig. 1. Spectrograms of (a) Speech and (b) Music, computed using frame
size of 10ms and frame shift of 5ms. Note the distinct striation patterns of
speech and music. This observation motivated our proposal of time-frequency
audio features for speech-music discrimination.

the frequency domain since specific tones play an essential
part in its production. Panagiotakis et al. [6] show that the
amount of silence present in the signal may also be a good
discriminator between the two classes. Short silences usually
punctuate speech sound units while music is generally contin-
uous (Fig. 1).

Many standard audio features have been used in literature to
model the distinct behaviors of speech and music. The most
widely used spectral features in this task are Zero-Crossing
Rate [5], Spectral Centroid, Spectral Roll-off, and Spectral
Flux [7]. Energy [8], Entropy [9] and Root Mean Square [5]
values are the most popular temporal features used in speech
vs. music classification (SMC, henceforth). Khonglah et al.
[10] have proposed that features predominantly used in speech
processing tasks (like the speech-specific modulation spectrum
features) can be effective in the current task also. On the other
hand, Sell et al. [5] suggest that chroma-based features are
better in modeling the octave patterns in music and thus might
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be useful in discriminating it from speech.
Existing works in SMC have mostly employed Gaussian

Mixture Models (GMM) [5], [10], [11], Artificial Neural
Networks (ANN) [9], k-Nearest Neighbors (kNN) [12], [13],
[14] and Support Vector Machines (SVM) [11], [7], [8] as
classifiers. Recently, authors have also used deep learning
techniques for solving the SMC task [15], [16]. CNNs are very
popular in image processing applications for feature learning
and classification. This motivated researchers to use CNNs
for learning features from the time-frequency representation of
audio segments. Doukhan et al. [17] propose a semi-supervised
training procedure for solving the SMC task. The first convolu-
tion layer in their architecture is pre-trained in an unsupervised
manner using the spherical k-means algorithm and later kept
constant throughout the model training phase. The input to
their model is the stacked Mel-frequency coefficients of 50
frames. Papakostas et al. [18], on the other hand, use transfer
learning to fine-tune an existing CNN model trained on image
classification problems to learn the discrimination between
spectrograms of speech and music.

There are works in literature that have explored features
that can capture simultaneous variations in temporal and
spectral domains for achieving better performance in SMC
[5], [7], [9], [10], [19]. Spectrograms are a popular method of
visualizing the tempo-spectral properties of an audio signal.
Fig. 1 (a) and (b) show the spectrograms of speech and music
respectively. Note that spectrograms can either have high
time-resolution (wideband spectrograms) or high frequency-
resolution (narrowband spectrograms), but not both at the
same time [20]. Wideband spectrograms are generated with
short temporal windows. They are characterized by vertical
striations that represent pitch period and formant frequencies
(in case of speech) in the form of prominent horizontal bands
[20]. Narrowband spectrograms are generated using longer
analysis windows and have horizontal striations that depict the
fundamental frequency and its harmonics. Peaks in the spectra
of audio frames may appear as striation patterns in spectro-
grams. Distinct class-specific properties can be captured by
tracing trajectories of the highest spectral peaks in the spec-
trograms. Researchers have also used spectrograms for feature
extraction. For example, Mesgarani et al. [21] were inspired
by the auditory cortical processing methods to use Gabor-
like spectro-temporal response fields for feature extraction
from spectrograms. Whereas Neammalai et al. [8] performed
thresholding and smoothing on standard spectrograms to form
binary images and used them as features for classification.

Peak tracking has been a widely explored approach in the
field of speech coding and synthesis. McAulay et al. [22]
proposed that a speech segment can be represented as a com-
bination of various sinusoids of specific frequency and definite
lifetime, called partials. They generated high-quality artificial
speech by adding together different partials with time weighing
and amplitude modulation. Smith et al. [23] proposed an
approach similar to [22], but for representing polyphonic
music. Lagrange et al. [24] proposed an improved partial
tracking algorithm based on the linear prediction algorithm
that can better model the pseudo periodic part of polyphonic
sounds. In other works, researchers have used a technique

called Spectral Peak Tracking (SPT, henceforth) to trace the
trajectory of fundamental frequency across consecutive frames
in the spectrogram [25], [26]. Techniques similar to SPT have
been used for feature generation in SMC literature as well.
Seyerlehner et al. [27] proposed a feature called Continuous
Frequency Activation (CFA, henceforth), which measures the
steadiness of spectral components within a block of audio.
Since music is considered to be relatively more stationary, this
feature provided improved results in case of music detection.
In works like [28], authors use a pre-determined threshold to
binarize the magnitude spectrum of each audio frame in an
interval to 1’s and 0’s. Subsequently, they count the number
of 1’s that appear for each frequency channel and use this
measure as a feature for classification. Padmanabhan et al. [29]
processed speech signals using band-pass filters and tracked
spectral peaks in each band for speech recognition.

It can be observed from Fig. 1 that speech and music signals
produce quite distinct striation patterns in their respective
spectrograms. Pitch and harmonics in speech slowly change
from one sound unit to another [30]. These gradual transi-
tions create arc-like striations in speech spectrograms. On the
other hand, music spectrograms contain many horizontal line
segments caused by relatively stationary pitch and harmonics,
and broken by their sharp transitions [31], [32]. These spectro-
temporal differences observed in the spectrograms of speech
and music can be attributed to the following reasons. First,
the speech production system possesses inertia [33], [34]. It
requires a relatively large amount of time to change from one
sound unit to another, leading to a smooth transition between
sound units in speech spectrograms. On the other hand,
individual notes of music have a specific onset instant, marked
by a relatively large burst of energy that makes its striation
patterns discontinuous [35]. Second, music tones decay slowly
[36]. Comparatively, the speech production system is a damped
system where sound units decay quite fast [37], which explains
the presence of horizontal patterns in music but not in speech.
Third, musical instruments produce only a fixed number of
tones and their overtones [5]. On the other hand, the speech
production system generates a large number of intermediate
frequencies while transitioning from one sound unit to another
[38], leading to the formation of arc-like patterns in speech
spectrograms.

The observed differences in the spectrograms of speech
and music motivated us to design features that can capture
these distinct class-specific striation patterns for speech vs.
music classification. However, hand-crafted features have a
high dependence on problem-specific assumptions. On the
other hand, automatic feature learning methods (like CNNs)
can efficiently learn underlying patterns in the data. However,
it is not very easy to interpret the information learned by
such deep-learning methods due to their inherent stochastic
nature. In applications where domain knowledge is available,
it is also worthwhile to explore hand-crafted features that can
show decent performance. Efficient hand-crafted features may
be combined with deep-learning-based features to build more
robust systems for SMC. These ideas form the basis of current
proposal. This work has the following contributions:
• Proposal of a novel approach for SPT (subsection II-A)
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which is capable of capturing prominent striation patterns
present in spectrograms of speech and music signals.

• Proposal of two novel features sets – (a) MSD feature
(subsection II-B) constructed using first and second order
moments of location and amplitude values of peak traces
obtained by SPT, (b) CBoW features (subsection II-C)
constructed using averaged posterior probabilities obtained
from Gaussian mixture models learned on peak traces
obtained from entire training data.

• Proposal of a combination of the proposed features with
deep-learning based features, that shows that such combi-
nations can build more robust SMC systems.

The rest of this paper is organized as follows. The proposed
scheme for SPT and subsequent feature extraction is described
in detail in Section II. Three standard speech-music datasets
are used to benchmark the proposal in this paper. We compare
the performance of our proposal with five baseline approaches.
We have performed extensive experiments and reported the
results in Section III. Finally, we conclude in Section IV and
sketch the possible future extensions of the present proposal.

II. PROPOSED WORK

Speech and music are complex non-stationary signals. Spec-
tra of speech consist of source harmonics superimposed by vo-
cal tract formants. Energy concentrations in the spectrograms
of speech signals are a manifestation of formants [39]. These
energy concentrations are formed by high-amplitude peaks in
speech spectra. It has been established that high-amplitude
peaks provide information about dominant formants in the
speech spectra [40], [29]. However, formants may be defined
only for voiced segments, which constitute a majority of the
speech content. On the other hand, music does not have any
formant structure in its spectrum. It is composed of harmonics
and resonances of the generating instruments. High amplitude
spectral peaks in the music spectra will mostly correspond
to resonant frequencies. The number of high amplitude spec-
tral peaks to be considered for tracking must be a tunable
parameter that depends upon the task at hand. For example,
in polyphonic music or multi-speaker speech, where many
fundamental frequencies might be present, considering more
spectral peak tracks may help in capturing better discriminat-
ing information.

Spectral peak trajectories carry valuable information about
the underlying sound segment. However, most speech pro-
cessing systems use perceptually motivated cepstral features
that do not explicitly model the peak trajectory information
[29]. SPT in speech and music spectrograms might be a very
effective way of extracting these discriminating features. There
can be at least three strong reasons for claiming this. First,
speech formants have a well-studied structure and show a
predictable behavior [41]. However, resonances in music have
a dynamic nature depending upon the composition and set
of instruments used to produce the signal. Second, speech
production uses only a single resonant cavity, i.e., the vocal
tract, whereas the music signal is composed of multiple
resonant devices depending upon the number of instruments
used. Any deviation from the resonance patterns of speech
may indicate the presence of music in the current two-class

TABLE I
REPEATING PROCEDURE STATISTICS FOR p = 10.

Percentage of peak-repeated frames
Dataset Music Speech Overall

GTZAN 0% 0% 0%

Scheirer-slaney 0% 0% 0%

Musan 0.022% 0.020% 0.021%

scenario. Third, as discussed in Section I, music signals tend
to maintain some of their spectral properties for a considerable
duration of time, whereas speech is highly non-stationary. We
assume that trajectories of spectral peaks could capture such
distinct behavior of speech and music. The proposed SPT
technique and the subsequent feature extraction procedure are
described in detail next.

A. Proposed SPT method

An audio segment x (x[n] ∈ R;n = 0, . . . Ns − 1) is di-
vided into L overlapping frames xl (l = 0, . . . L− 1) of size
2Nf . Let the kth DFT coefficient of xl be,

Xl[k] =

2Nf−1∑
m=0

xl[m]e
−jk

2π

2Nf
m

(1)

where, k = 0 . . . 2Nf −1. These frames (xl) are sequences of
real numbers. Hence, only the first Nf DFT coefficients (i.e.
Xl[k]; k = 0, . . . Nf−1) are considered for further processing.
Next, we identify the frequency locations of all spectral peaks
in lth frame to construct the following set Hl.

Hl = {k : (|Xl[k − 1]| < |Xl[k]|) ∧ (|Xl[k]| > |Xl[k + 1]|)}
(2)

where 0 ≤ k < (Nf − 1) and |Xl[k]| indicates the magnitude
of Xl[k]. The number of spectral peaks in each frame varies.
Not all spectral peaks are important for the task at hand.
Thus, only a fixed number (atmost p, say) of highest amplitude
peaks are identified from the spectrum of each frame. These
highest spectral peaks from each frame are used to construct
the truncated frequency location set H̃l:

H̃l =
{
k(0), k(1), . . . k(q)

} (
H̃l ⊆ Hl

)
(3)

such that |Xl[k(0)]| ≥ |Xl[k(1)]| ≥ . . . ≥ |Xl[k(q)]| and
0 < q ≤ (p− 1). If for any lth frame, q < (p− 1), then the
highest frequency location (i.e., max(H̃l)) in H̃l is repeated
p − 1 − q times to maintain uniform cardinality of H̃l (i.e.,
| H̃l |= p) for all frames. When just a small number of
highest amplitude spectral peaks are considered (p = 10,
say), this repeating procedure has negligible effect on the
peak amplitude and location distributions. It is evident from
Table I that the percentage of frames requiring peak repetition
is Nil for two of the datasets used for evaluation, (GTZAN
and Scheirer-Slaney, see Section III), while only a minuscule
percentage of frames from the third dataset (MUSAN dataset,
Section III) require peak repetition.
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(a) (b)

(c) (d)

Fig. 2. Illustrating the effect of multiple fundamental frequencies on the spectrograms and subsequently on the proposed peak tracking algorithm. The figures
shown are spectrograms computed from 1s intervals of (a) monophonic music, (b) polyphonic music, (c) single speaker speech, and (d) multi-speaker speech.
In each subfigure, the original spectrogram is shown in the left, and the SPT spectrogram is shown in the right.

Next, the elements of H̃l (frequency locations of the p
highest peaks in the lth frame spectra) are further sorted in
descending order to construct the vector fHl such that:

fHl[0] ≥ fHl[1] ≥ . . . ≥ fHl[p− 1] (4)

Here, fHl[r] ∈ H̃l and r = 0, . . . p−1. fHl contains the sorted
frequency locations of the spectral peaks in H̃l. The vectors
fHl (l = 0, . . . L − 1) are used to construct a p × L Peak
Location Matrix (PLM, henceforth) L for an audio interval.
The lth column of L is defined as

Ll = fHT
l (5)

Similarly, a Peak Amplitude Matrix (PAM, henceforth) A can
be constructed. The elements of A are defined as

A[r, l] = Xl[h] (6)

where h = L[r, l], r = 0, . . . (p− 1) and l = 0, . . . (L− 1). A
flow-chart describing the procedure of computing the PLM (or
PAM) matrix is provided in Fig. 4. Each row of L is defined
as Location Sequence of Peak Traces (LSPT, henceforth).
Similarly, each row of A is defined as Amplitude Sequence
of Peak Traces (ASPT, henceforth). Note that the first row of
L (or A) corresponds to the peak traces of highest end of
the spectrum. Similarly, the last row of L (or A) corresponds
to the peak traces of lowest end of the spectrum. LSPT
and ASPT are sequences of peak location and amplitude
values, respectively. This work views these peak traces as sub-
channels of information extracted from the spectrogram of an
audio interval.

In Fig. 2, the traces of identified spectral peaks are shown
in the actual time-frequency scale as a separate representa-
tion, termed as an SPT-spectrogram in this work. An SPT-
spectrogram is a matrix of the same size as the actual spec-
trogram, initialized with zeros. On this matrix, each spectral
peak is located with its frequency bin and frame index and
initialized with its amplitude. This SPT-spectrogram, when
plotted as an image, shows the peak traces extracted from
the corresponding spectrogram. We observe (Fig. 2) that peak
traces capture unique striation patterns of speech and music
spectrograms. Each LSPT (or ASPT) represents a part of this
striation information. When multiple sources (hence multiple
fundamental frequencies) are present in the audio segment, the
harmonic patterns are disturbed, and the spectrogram becomes
noisy. However, the signal retains a basic property of its audio
class. As can be observed in Fig. 2, both monophonic (Fig. 2
(a)) and polyphonic (Fig. 2 (b)) music contain relatively linear
striation patterns. Whereas, single-speaker (Fig. 2 (c)) and
multi-speaker (Fig. 2 (d)) speech have curvy striations. Since
the basic assumption of this work is preserved even in the
case of multiple F0 signals, the proposed approach is still
able to capture the required discriminative information for
classification. Efficacy of the proposed SPT approach can be
confirmed by observing the SPT spectrograms shown in Fig. 2
(a)-(d) that contain all the prominent spectral striations for all
the four cases. Note that these SPT-spectrograms are generated
just for visualization purposes and are not used for feature
computation. The proposed features are computed using the
PLM (and PAM) matrix. Our proposal for modeling the
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Fig. 3. Illustration of the peak location and amplitude distributions for 1st, 5th, and 10th peak traces, generated using frame size of 10ms and frame shift
of 5ms. Figures (a)-(c) show peak location distributions and Figures (d)-(f) show peak amplitude distributions. The data is drawn from the GTZAN dataset.

distributions of LSPTs (or ASPTs) as features are discussed
next.

B. Statistical moments of peak traces as feature

Fig. 3 (a)-(c) respectively show distributions of first, fifth
and tenth LSPT distributions of speech and music across all
data in GTZAN dataset. Similarly, Fig. 3 (d)-(f) respectively
show first, fifth and tenth ASPT distributions of speech and
music. The LSPTs (and ASPTs) have been computed using
short-term frames of size 10ms and a frame shift of 5ms. It
can be seen that the corresponding distributions of LSPT and
ASPT of speech and music are different. This difference might
be useful in classifying these two classes if the distributions of
these sequences are represented in suitable feature space. Our
first proposal involves the use of Mean and Standard Deviation
(MSD, henceforth) for modeling these distributions. Accord-
ingly, the features extracted from PLM (L, (5)) and PAM (A
(6)) are named as MSD-LSPT and MSD-ASPT respectively.
For notational convenience, the index r (0 ≤ r < p) is used for
referring to the rth row of L and A. Attributes derived from
the rth LSPT (or ASPT) will also be indexed by r. Mean µLr
and standard deviation σLr of the rth LSPT is computed as:

µLr =
1

L

L−1∑
l=0

L[r][l] σLr =

√√√√ 1

L

L−1∑
l=0

(L[r][l]− µLr )
2 (7)

The MSD feature computed from PLM is proposed as a
2p-dimensional vector given by:

MSD-LSPT =
[
µL0 , . . . µ

L
p−1, σ

L
0 , . . . σ

L
p−1
]

(8)

Similarly, the mean (µAr ) and standard deviation (σAr ) of ASPT
can be computed from PAM, and used to construct the MSD
feature as a 2p-dimensional vector given by:

MSD-ASPT =
[
µA0 , . . . µ

A
p−1, σ

A
0 , . . . σ

A
p−1
]

(9)

Additionally a 4p-dimensional feature vector MSD-ASPT-
LSPT can be formed by concatenating MSD-ASPT and MSD-
LSPT. The MSD features extracted from individual intervals
of speech and music data are provided for training classifiers.
Performance of MSD features in SMC on standard datasets
are shown in Section III. This proposal uses only the first and
second order statistics of LSPT (or ASPT). Our next proposal
employs Gaussian mixture models for modelling peak location
and amplitude distributions.

C. Component Bag-of-Words (CBoW) features from peak
traces

Peak traces are temporally ordered sequences of prominent
peaks occurring in successive frames of an audio interval.
We believe that these sequences are capable of capturing the
highest energy striation patterns observed in spectrograms. It
can be observed from Fig. 3 that the peak traces exhibit multi-
modal distributions. Thus, the use of only mean and standard
deviation might be insufficient to model these distributions.
Moreover, the MSD features are extracted from individual
audio intervals and hence, are oblivious to their global dis-
tribution. This motivated us to propose another set of features
that are capable of representing the inherent multi-modality of
the underlying global distribution.

Gaussian mixture models (GMMs, henceforth) are widely
used to characterize multi-modal data. A K-component GMM
G =

{
C0, C1, . . . C(K−1)

}
consists of the component Gaussians

Cj = {πj , µj , νj} (j = 0, . . . (K − 1)). Here, πj is the
mixing parameter, µj is the mean and νj is the variance
of Cj . Usually, a GMM is learned using the Expectation-
Maximization algorithm. The number of GMM components
(K) is selected empirically based on experimental results.
In this work, single dimensional GMMs are trained with an
optimal number of modes (K) to model the distribution of any
rth peak trace across the whole training dataset. Let Gr be a
GMM trained on any rth peak trace of either speech or music.
Let u be the location (or amplitude) of a member peak of the
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Fig. 4. Flow chart illustrating the process of computing the PAM and PLM matrices.

rth peak trace. The posterior probability of the jth component
Crj of Gr with respect to u can be computed as

P
(
Crj | u

)
=

P
(
u | Crj

)
πrj

K−1∑
i=0

P (u | Cri )πri

(10)

Here, the likelihood function P
(
u | Crj

)
is defined as

P
(
u | Crj

)
=

1√
2πνrj

exp

(
−
(
u− µrj

)2
2νrj

)
(11)

Let mGr =
{
mCrj

}
and sGr =

{
sCrj
}

(j = 0, . . .K − 1)
be two GMMs learned from the rth peak traces across the
whole training set of music and speech respectively. The peak
trace distributions of music and speech are observed to be
distinctly different. This will lead to two GMMs with different
component Gaussians. Thus, we assume that for most cases:

1

L

L−1∑
l=0

P
(
mCrj | ul

)
6= 1

L

L−1∑
l=0

P
(
sCrj | ul

)
(12)

where ul are location (or amplitude) of peak traces of an inter-
val of L frames. This motivated us to propose the Component
Bag-of-Words (CBoW, henceforth) features as averaged K
posterior probabilities obtained from speech and music GMMs
learned from p peak traces. These features have been named
such because of their similarity to bag-of-words representation
existing in the literature. CBoW feature extraction is a two
stage process. The first stage involves estimation of separate
GMMs from peak traces of all speech and music training data.
This is described next.

Let sLt be the PLM matrix constructed from the tth interval
(t = 0, . . . Ts − 1) of speech training data. Similarly, let mLτ
denote the PLM matrix constructed from the τ th interval (τ =
0, . . . Tm − 1) of music training data. Let the rth rows of sLt
and mLτ be denoted by lsR

r
t and lmR

r
τ respectively (r =

0, . . . (p− 1)). Two different sets:

lsS
r = {lsRrt [i]; t = 0, . . . Ts − 1, i = 0, . . . L− 1} (13)

lmSr = {lmRrτ [i]; τ = 0, . . . Tm − 1, i = 0, . . . L− 1} (14)

are constructed for accumulating the frequency locations of
the rth peak traces of respective speech and music training

data. Single dimensional K-component GMMs lsGr and lmGr
are estimated from the elements of lsSr and lmSr respectively.
Note that, two GMMs are learned for any rth peak trace. Thus,
a total of 2p GMMs are estimated for p peak traces. We next
describe the second stage of CBoW feature extraction that
involves the computation of posterior probability vectors for
any given audio interval.

Let L be the p × L PLM matrix of an audio interval
containing L frames. Let lRr be the rth row of L. The learned
GMMs lmGr and lsGr are used to obtain component-wise
posterior probabilities for each element of lRr. The averaged
posterior probability vector lmHr for lRr is obtained by using
lmGr. This is computed as follows.

lmZr (i) =
[
P (lmCr0 | lRr[i]) , . . .P

(
lmCr(K−1) | lR

r[i]
)]

lmHr =
1

L

L−1∑
i=0

lmZr (i) (15)

Similarly, the averaged posterior probability vector lsHr for
lR

r is computed (using lsGr) in the following manner.

lsZr (i) =
[
P (lsCr0 | lRr[i]) , . . .P

(
lsCr(K−1) | lR

r[i]
)]

lsHr =
1

L

L−1∑
i=0

lsZr (i) (16)

Note that, both lsHr and lmHr are K length vectors. We
construct the proposed CBoW-LSPT feature as a 2 ×K × p
dimensional vector and is given by

CBoW-LSPT =
[
lmH0, lsH0, . . . , lmHp−1, lsHp−1

]
(17)

Similarly, PAM matrices computed from both speech and
music intervals are denoted as mAτ and sAt respectively. The
rth rows amR

r
τ and asR

r
t of mAτ and sAt are used to form

the sets amSr and asS
r. The respective GMMs amGr and

asGr are estimated from amSr and asS
r. For any given audio

interval with PAM matrixA, the averaged posterior probability
vectors amHr and asHr are computed in a similar manner as
described in eqn 15 and eqn 16. The CBoW-ASPT feature is
constructed as a 2×K × p length vector and is given by

CBoW-ASPT =
[
amH0,asH0, . . . ,amHp−1,asHp−1

]
(18)

Additionally, a 4×K×p-dimensional feature vector CBoW-
ASPT-LSPT can be formed by concatenating CBoW-ASPT
and CBoW-LSPT. Fig. 5 shows a functional block diagram
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Fig. 5. Schematic diagram representing the procedure for computing the CBoW-LSPT feature. The feature computation is a two stage process. STAGE 1
estimates separate GMMs for speech and music peak traces from entire training data. These learned GMMs are used in the STAGE 2 to construct the
CBoW-LSPT features. While computing CBoW-ASPT feature, the LPT Matrix Computation block is replaced by the APT Matrix Computation block.

for computing the CBoW features. Detailed experimentation
with proposed features and the results of performance analysis
are presented next.

III. EXPERIMENTS AND RESULTS

The proposed features are validated on three datasets. These
are (a) GTZAN Music/Speech collection [42], (b) Scheirer-
Slaney Music-Speech Corpus [43], (c) MUSAN - A Music,
Speech and Noise corpus [44]. Both GTZAN and Scheirer-
Slaney contain 1 hour of data. On the other hand, MUSAN is
a much larger dataset containing around 102.5 hours of speech
and music data.

Five baseline approaches have been used to benchmark
our proposal. The first baseline uses speech specific features
set (FS) proposed by Khonglah et al. [10] (Khonglah-FS,
henceforth). The second baseline (Sell-FS, henceforth)
uses chroma based features to represent music tonality for
enhanced speech music classification [5]. The Mel Frequency
Cepstral Coefficients (MFCCs) are widely used in most
speech processing applications, including SMC [7]. This
work uses the 39-dimensional MFCCs along with their
∆ and ∆∆ coefficients as the third baseline (MFCC-39,
henceforth) for performance comparison. Keum et al. in [45]
proposed features derived from a variant of spectral peak
tracking for speech and music discrimination. This approach
is adopted as our fourth baseline (Keum-FS, henceforth).
Finally, to contemporize the proposal and for benchmarking
against current trends of deep-learning based methods, this
work uses the CNN architecture proposed in [18] as the
fifth baseline (Papakostas-CNN, henceforth). Spectrogram
images of 1s intervals are used to train the CNN and are used
to generate results for comparison with the proposed approach.

The experiments are performed using standard python pack-
ages 1. This work uses a train-test split ratio of 80 : 20.
The examples in each of the two sets are sampled randomly

1Codes used in this work can be found at https://github.com/mrinmoy-
iitg/Speech-Music-Classification-Using-SPT

TABLE II
ARCHITECHTURE OF DNN USED IN TABLE VI, VII AND VIII.

Input Layer: Size L1 = Feature Dimension

Layer 2: Size L2 = 2× L1, Activation = ReLU

Layer 3: Size L3 = 2
3
× L2, Activation = ReLU

Layer 4: Size L4 = 1
2
× L3, Activation = ReLU

Layer 5: Size L5 = 1
3
× L4, Activation = ReLU

Output Layer: Size L6 = 2, Activation = SoftMax

without replacement to ensure that there is no overlap between
the two sets. Classifier hyperparameters have been tuned
over a validation set extracted from the training set, keeping
the testing set untouched until final evaluation. Classification
performance is reported using the mean and standard deviation
of F1-scores [46] obtained from 10 independent trials. The
number of peak-traces (p) and the number of GMM mixtures
(K) for computing the proposed features are set to 10 and 5
respectively, based on experimental results. For GTZAN and
Scheirer-Slaney datasets, classification results for baseline and
proposed features are generated using SVM (RBF kernel). The
cost and gamma parameters of SVM are tuned using a grid
search. For MUSAN dataset, results for baseline and proposed
features are computed using Bagged RBF-SVM and Deep
neural network (DNN) based classifier. The Bagged SVM
classifier ensemble has 10 base SVM classifiers with 20%
bootstrap in each bag. The cost and gamma parameters of all
base SVMs are optimized using a grid search. Table II shows
the DNN architecture used in this work. The DNN model is
trained for 100 epochs with a batch size of 64.

A. Effect of varying frame and interval size

Table III presents the effect of changing short-term audio
frame size from 10 ms to 30 ms (frame shifts are taken as
half of the frame sizes). A smaller short-term frame gives
a smoother spectrum that resembles the formant structure in
speech. The presence of formants in speech discriminates it
from music. Thus, the performance of proposed features is
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TABLE III
PERFORMANCE OF PROPOSED FEATURES FOR different audio frame sizes

OVER GTZAN DATASET USING 10-COMPONENT GMM CLASSIFIER.
INTERVAL SIZE IS FIXED AT 1S. FRAME SHIFTS ARE TAKEN AS 5MS, 10MS
AND 15MS, CORRESPONDING TO FRAME SIZES OF 10MS, 20MS AND 30MS,

RESPECTIVELY.

Features
Frame Size (in miliseconds)

10 20 30

MSD-ASPT 86.96 ±1.65 86.42 ±1.38 86.73 ±1.91
MSD-LSPT 87.51 ±0.89 88.68 ±0.85 86.60 ±1.39

MSD-ASPT-LSPT 90.92 ±1.24 91.21 ±0.92 89.41 ±1.38
CBoW-ASPT 86.56 ±1.28 86.98 ±1.74 88.53 ±1.29
CBoW-LSPT 87.51 ±2.16 87.40 ±1.35 85.79 ±2.16

CBoW-ASPT-LSPT 92.67 ±0.84 93.10 ±0.93 91.79 ±1.06

TABLE IV
PERFORMANCE OF PROPOSED FEATURES FOR different interval sizes OVER

GTZAN DATASET USING 10-COMPONENT GMM CLASSIFIER.

Classification Interval Size (in seconds)
Features 0.50 1.00 2.00

MSD-ASPT 84.34 ±1.37 86.96 ±1.65 86.83 ±2.08
MSD-LSPT 82.77 ±1.52 87.51 ±0.89 90.70 ±1.28

MSD-ASPT-LSPT 88.19 ±1.55 90.92 ±1.24 92.81 ±1.90
CBoW-ASPT 83.48 ±1.03 86.56 ±1.28 89.55 ±2.11
CBoW-LSPT 82.63 ±1.61 87.51 ±2.16 90.57 ±1.37

CBoW-ASPT-LSPT 89.36 ±1.01 92.67 ±0.84 94.16 ±1.68

expected to be better for smaller frame sizes. The performance
of the proposed features drops for a frame size of 30 ms.
On the other hand, almost similar performances are noted for
frame sizes of 10 ms and 20 ms. For all further experiments,
this work uses a 10 ms frame size (and 5 ms frame shift).

Table IV presents the performance of proposed features
computed for three different audio interval sizes – 0.5s, 1s and
2s. We observe an improvement in classification performance
for an increase in interval size. This result indicates that using
larger interval sizes lead to better modeling of the spectral
peak traces. However, in real scenarios, larger interval sizes
will lead to poor (time) resolution of classifier decisions. On
the other hand, a smaller interval size will result in poor
performance. Hence, this work considers 1s audio intervals
as units for classification decision as a compromise between
lower resolution and better performance.

B. Performance analysis

Table V presents performance of baseline and proposed
features using SVM (RBF kernel) over the GTZAN and
Scheirer-Slaney datasets. The CBoW-ASPT-LSPT and MSD-
ASPT-LSPT features provide best and second-best perfor-
mance over these two datasets. Table VI shows the classi-
fication performance of baseline and proposed features on
MUSAN dataset using bagged SVM (RBF kernel) and DNN.
All baseline and proposed features show better performance
over this dataset due to the availability of a large amount of
training data. Even the standard deviations of F1-scores are
observed to reduce significantly. The MFCC-39 turns out to
be the best baseline feature. The CBoW features individually
perform better than individual MSD features. MSD-ASPT-

LSPT feature substantially improves upon the MSD features
taken separately. However, CBoW-ASPT-LSPT stands out as
the overall best performer with the DNN classifier.

Table VII presents the performance comparison of
Papakostas-CNN, the best of the other four baselines, and
the best of the proposed features for all three datasets. For
GTZAN and Scheirer-Slaney, the performance of Papakostas-
CNN is significantly lower than the best baseline and proposed
features. This can be attributed to the lack of sufficient
training data available in smaller datasets. However, for the
larger MUSAN dataset, Papakostas-CNN outperforms all other
methods. The proposed CBoW-ASPT-LSPT feature provides
comparable performance on MUSAN dataset. This indicates
the efficiency of proposed CBoW features in SMC.

Experiments were also performed to show the effectiveness
of combining CBoW-ASPT-LSPT feature with two contempo-
rary deep-learning based features. First is the deep bottleneck
feature (DBF, henceforth), which has gained popularity in
many speech processing applications in recent times [47].
DBFs are generated using a deep neural network. One of the
hidden layers in this network, called the bottleneck layer, has
significantly less number of nodes compared to other layers.
Embeddings generated from this layer are referred to as DBF.
The DBF network considered in this work has 5 hidden layers,
and the middle one is the bottleneck layer. The bottleneck
layer has a size of 50, the input and other hidden layers have
1313 nodes each, and the output layer has 2 nodes. MFCC
(13-dimensional) features for every frame in a 1s interval are
concatenated and passed as input to the DBF network. Second,
feature embeddings generated from Papakostas-CNN network
(Papakostas-CNN-Embed, henceforth) are used as the other
deep-learning based feature. Papakostas-CNN-Embed feature
is extracted from the penultimate layer of the CNN network
proposed in [18] and has a dimension of 4096. The DNN
architecture described in Table II is used as the classifier in
this experiment.

The results obtained from these experiments are listed in
Table VIII. It can be observed from the Table that Papakostas-
CNN-Embed is the best performer individually. However,
when the DBF and Papakostas-CNN-Embed features are sepa-
rately combined with CBoW-ASPT-LSPT, the results improve.
Although both early and late fusion strategies show an im-
provement in the performance, it can be observed that late
fusion provides better results in both cases. As such, it can
be said that the proposed CBoW-ASPT-LSPT features can
capture some additional information that is missed by the deep
learning methods, which leads to improvement in performance
upon combination.

C. Discussions

The following intuitive reasoning can be proposed to ex-
plain the efficiency of the CBoW features. First, each one-
dimensional element of LSPT (or ASPT) is projected to
a K-dimensional posterior probability vector. Such a non-
linear transformation to a higher dimensional space might
induce separability of features. Second, the averaged posterior
probability vectors of all peak traces are concatenated together.
This concatenation leads to enhanced chances of separability
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TABLE V
PERFORMANCE OF SMC USING SVM (RBF KERNEL) CLASSIFIER ON GTZAN AND SCHEIRER-SLANEY DATASETS. PERFORMANCE IS REPORTED

AS: AVERAGE F1-SCORE ± STANDARD DEVIATION. THE TOP THREE PERFORMANCES ARE INDICATED BY: F (BEST), ♥ (2nd BEST) AND ♣ (3rd BEST).

Baseline Proposed
Dataset Khonglah-

FS
Sell-FS MFCC-

39
Keum-FS MSD-

ASPT
MSD-
LSPT

MSD-
ASPT-LSPT

CBoW-
ASPT

CBoW-
LSPT

CBoW-
ASPT-LSPT

GTZAN 91.02
±1.53

94.00
±0.86♣

93.48
±0.94

90.75
±1.34

92.00
±2.35

89.05
±2.47

94.17
±2.19 ♥

92.58
±2.24

92.46
±2.90

95.25
±2.24 F

Scheirer
Slaney

95.22
±0.86♣

94.99
±0.63

93.86
±1.20

88.35
±1.54

94.33
±1.87

92.75
±0.85

96.12
±1.78 ♥

95.03
±1.15

93.89
±1.40

96.15
±1.09 F

TABLE VI
PERFORMANCE OF SMC USING BAGGED-SVM (RBF KERNEL) AND DNN CLASSIFIERS ON MUSAN DATASET. PERFORMANCE IS REPORTED AS:

AVERAGE F1-SCORE ± STANDARD DEVIATION. THE TOP THREE PERFORMANCES ARE INDICATED BY: F (BEST), ♥ (2nd BEST) AND ♣ (3rd BEST).

Baseline Proposed
Classifier Khonglah-

FS
Sell-FS MFCC-

39
Keum-FS MSD-

ASPT
MSD-
LSPT

MSD-
ASPT-LSPT

CBoW-
ASPT

CBoW-
LSPT

CBoW-
ASPT-LSPT

Bagged-
SVM

91.09
±0.12

97.32
±0.05

98.29
±0.05♥

95.37
±0.06

94.28
±0.08

93.25
±0.07

98.10
±0.05 ♣

95.32
±0.08

96.75
±0.09

98.99
±0.04 F

DNN 92.49
±0.12

97.62
±0.09

98.56
±0.09♥

95.40
±0.52

94.52
±0.59

91.88
±1.56

97.51
±0.55 ♣

95.35
±0.67

97.14
±0.63

98.87
±0.25 F

TABLE VII
PEFORMANCE COMPARISON OF BEST BASELINE AND PROPOSED

FEATURES WITH 2D CNN BASED BASELINE (PAPAKOSTAS-CNN).

Dataset Papakostas-
CNN

Best baseline Best Proposed
(CBoW-ASPT-LSPT)

GTZAN 89.76 ±3.16 94.00 ±0.86
(Sell-FS)

95.25 ±2.24

Scheirer-
slaney

90.85 ±4.29 95.22 ±0.86
(Khonglah-FS)

96.15 ±1.09

Musan 99.36 ±0.76 98.56 ±0.09
(MFCC-39)

98.87 ±0.25

TABLE VIII
RESULT OF COMBINING THE PROPOSED FEATURES WITH CONTEMPORARY

DEEP NETWORK BASED TECHNIQUES.

Feature F1-score
CBoW-ASPT-LSPT (CAL) 98.87 ±0.25

DBF [47] 98.87 ±0.41
Papakostas-CNN-Embed [18] 99.17 ±0.2
CAL + DBF (Early fusion) 99.50 ±0.17
CAL + DBF (Late fusion) 99.61 ±0.15

CAL + Papakostas-CNN-Embed (Early Fusion) 99.66 ±0.06
CAL + Papakostas-CNN-Embed (Late Fusion) 99.80 ±0.05

in a higher-dimensional space. Third, the process of averaging
posterior probability vectors over an interval possibly empha-
sizes the importance of class-specific components.

The results reported in Table VII indicate that the proposed
feature is unable to improve upon the baseline Papakostas-
CNN approach over the larger MUSAN dataset. Even though
the proposed feature does provide comparable performance to
Papakostas-CNN, yet it seems to fail in taking full advantage
of more training data. Thus, for larger datasets, Papakostas-
CNN, in the combination of the proposed feature (see Ta-
ble VIII) may be a better choice for this task. However,
Papakostas-CNN is unable to learn correctly in low data cases

(GTZAN and Scheirer-Slaney datasets). As such, the proposed
feature may be the better choice for this task in the case of
smaller datasets.

In practical scenarios, classification models trained on clean
speech and music data may be tested with data that have a
mixture of both the classes. To gauge the effectiveness of
proposed features in a mixed data scenario, a set of mixed-
class (MC, henceforth) data experiments have been performed.
In one set, test data contains pure speech vs. MC (PS-MC,
henceforth), while in the other set, test data contains pure
music vs. MC (PM-MC, henceforth). In the case of PS-MC,
speech is mixed with music in the specified ratios (−20dB
to +20dB) to generate MC data. Similarly, for the PM-MC
experiment, music is mixed with speech in the specified ratios
(−20dB to +20dB) to generate MC data. It can be observed
from Fig 6 that as the amount of mixture in MC data increases,
the performance gradually drops. With an increasing amount
of mixture, MC data becomes increasingly similar to the pure
class data considered in the experiment. For e.g., in the PS-MC
case, with increasing amount of mixture, MC data becomes
increasingly similar to speech, and the vice verse for PM-MC
case. As such, all testing samples get recognized as any one of
the two classes. The lowest performance reaches close to 50%
and thus justifies this reasoning. Thus, it can be observed from
Fig. 6 that the proposed feature shows stable performance with
graceful degradation as long as either speech or music is the
dominating content over the added noise in MC data. Thus, it
can be said that the proposed feature is robust to a tolerable
extent.

IV. CONCLUSION

This work proposes a novel two-stage feature extraction
scheme for representing the time-frequency characteristics of
an audio interval. The first stage uses a detects p prominent
spectral peak traces in an interval of audio. Two sets of
proposed features (MSD and CBoW) are computed from the
locations (or amplitudes) of the detected peak traces. The
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Fig. 6. Figure illustrating the performance of CBoW-ASPT-LSPT with mixed
class (MC) data. The performance drops drastically for both the cases when
SNR increases beyond 2 dB

performance of our proposal is validated on three standard
datasets and compared with five baseline approaches. It is
shown that the fusion of either MSD (i.e., MSD-ASPT-LSPT)
or CBoW (i.e., CBoW-ASPT-LSPT) features provide better
performance than the individual ones. Experiments show that
CBoW-ASPT-LSPT stands out as the overall best feature.
Further, a combination of the proposed CBoW-ASPT-LSPT
feature with contemporary deep bottleneck features and deep
CNN embeddings were shown to improve the classification
performance, indicating that such a combination can form
highly robust SMC systems.

The present proposal can be extended in the following
directions. First, optimizing the number of GMM components
(rather than using a fixed K) for different peak traces of speech
and music might reduce the feature dimension and provide bet-
ter classification performance. Second, the proposed features
can be extended to increase their robustness towards mixed
class data. Third, the proposed features may be employed in
the task of identifying the dominant content in a mixed speech
and music signal. Fourth, the present proposal focusses on the
binary problem of SMC. We believe that the proposed features
can be applied in other audio classification problems involving
multi-category environmental sounds.
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